Рассчитать высоту треугольника со сторонами 147, 141 и 139
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{147 + 141 + 139}{2}} \normalsize = 213.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{213.5(213.5-147)(213.5-141)(213.5-139)}}{141}\normalsize = 124.21321}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{213.5(213.5-147)(213.5-141)(213.5-139)}}{147}\normalsize = 119.143283}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{213.5(213.5-147)(213.5-141)(213.5-139)}}{139}\normalsize = 126.00045}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 147, 141 и 139 равна 124.21321
Высота треугольника опущенная с вершины A на сторону BC со сторонами 147, 141 и 139 равна 119.143283
Высота треугольника опущенная с вершины C на сторону AB со сторонами 147, 141 и 139 равна 126.00045
Ссылка на результат
?n1=147&n2=141&n3=139
Найти высоту треугольника со сторонами 105, 103 и 29
Найти высоту треугольника со сторонами 131, 118 и 37
Найти высоту треугольника со сторонами 147, 145 и 116
Найти высоту треугольника со сторонами 76, 74 и 52
Найти высоту треугольника со сторонами 50, 48 и 42
Найти высоту треугольника со сторонами 121, 112 и 105
Найти высоту треугольника со сторонами 131, 118 и 37
Найти высоту треугольника со сторонами 147, 145 и 116
Найти высоту треугольника со сторонами 76, 74 и 52
Найти высоту треугольника со сторонами 50, 48 и 42
Найти высоту треугольника со сторонами 121, 112 и 105