Рассчитать высоту треугольника со сторонами 147, 144 и 37
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{147 + 144 + 37}{2}} \normalsize = 164}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{164(164-147)(164-144)(164-37)}}{144}\normalsize = 36.9598965}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{164(164-147)(164-144)(164-37)}}{147}\normalsize = 36.2056129}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{164(164-147)(164-144)(164-37)}}{37}\normalsize = 143.843922}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 147, 144 и 37 равна 36.9598965
Высота треугольника опущенная с вершины A на сторону BC со сторонами 147, 144 и 37 равна 36.2056129
Высота треугольника опущенная с вершины C на сторону AB со сторонами 147, 144 и 37 равна 143.843922
Ссылка на результат
?n1=147&n2=144&n3=37
Найти высоту треугольника со сторонами 42, 42 и 35
Найти высоту треугольника со сторонами 144, 136 и 34
Найти высоту треугольника со сторонами 100, 91 и 85
Найти высоту треугольника со сторонами 135, 100 и 60
Найти высоту треугольника со сторонами 103, 84 и 61
Найти высоту треугольника со сторонами 147, 113 и 91
Найти высоту треугольника со сторонами 144, 136 и 34
Найти высоту треугольника со сторонами 100, 91 и 85
Найти высоту треугольника со сторонами 135, 100 и 60
Найти высоту треугольника со сторонами 103, 84 и 61
Найти высоту треугольника со сторонами 147, 113 и 91