Рассчитать высоту треугольника со сторонами 147, 82 и 69
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{147 + 82 + 69}{2}} \normalsize = 149}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{149(149-147)(149-82)(149-69)}}{82}\normalsize = 30.8252544}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{149(149-147)(149-82)(149-69)}}{147}\normalsize = 17.1950399}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{149(149-147)(149-82)(149-69)}}{69}\normalsize = 36.6329111}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 147, 82 и 69 равна 30.8252544
Высота треугольника опущенная с вершины A на сторону BC со сторонами 147, 82 и 69 равна 17.1950399
Высота треугольника опущенная с вершины C на сторону AB со сторонами 147, 82 и 69 равна 36.6329111
Ссылка на результат
?n1=147&n2=82&n3=69
Найти высоту треугольника со сторонами 110, 104 и 46
Найти высоту треугольника со сторонами 40, 35 и 25
Найти высоту треугольника со сторонами 81, 81 и 61
Найти высоту треугольника со сторонами 74, 63 и 24
Найти высоту треугольника со сторонами 100, 61 и 59
Найти высоту треугольника со сторонами 98, 92 и 42
Найти высоту треугольника со сторонами 40, 35 и 25
Найти высоту треугольника со сторонами 81, 81 и 61
Найти высоту треугольника со сторонами 74, 63 и 24
Найти высоту треугольника со сторонами 100, 61 и 59
Найти высоту треугольника со сторонами 98, 92 и 42