Рассчитать высоту треугольника со сторонами 147, 85 и 73
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{147 + 85 + 73}{2}} \normalsize = 152.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{152.5(152.5-147)(152.5-85)(152.5-73)}}{85}\normalsize = 49.9186449}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{152.5(152.5-147)(152.5-85)(152.5-73)}}{147}\normalsize = 28.8645226}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{152.5(152.5-147)(152.5-85)(152.5-73)}}{73}\normalsize = 58.1244495}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 147, 85 и 73 равна 49.9186449
Высота треугольника опущенная с вершины A на сторону BC со сторонами 147, 85 и 73 равна 28.8645226
Высота треугольника опущенная с вершины C на сторону AB со сторонами 147, 85 и 73 равна 58.1244495
Ссылка на результат
?n1=147&n2=85&n3=73
Найти высоту треугольника со сторонами 127, 78 и 64
Найти высоту треугольника со сторонами 92, 70 и 38
Найти высоту треугольника со сторонами 119, 93 и 47
Найти высоту треугольника со сторонами 138, 129 и 74
Найти высоту треугольника со сторонами 148, 125 и 37
Найти высоту треугольника со сторонами 136, 99 и 76
Найти высоту треугольника со сторонами 92, 70 и 38
Найти высоту треугольника со сторонами 119, 93 и 47
Найти высоту треугольника со сторонами 138, 129 и 74
Найти высоту треугольника со сторонами 148, 125 и 37
Найти высоту треугольника со сторонами 136, 99 и 76