Рассчитать высоту треугольника со сторонами 147, 86 и 77
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{147 + 86 + 77}{2}} \normalsize = 155}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{155(155-147)(155-86)(155-77)}}{86}\normalsize = 60.0778295}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{155(155-147)(155-86)(155-77)}}{147}\normalsize = 35.1475737}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{155(155-147)(155-86)(155-77)}}{77}\normalsize = 67.0999134}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 147, 86 и 77 равна 60.0778295
Высота треугольника опущенная с вершины A на сторону BC со сторонами 147, 86 и 77 равна 35.1475737
Высота треугольника опущенная с вершины C на сторону AB со сторонами 147, 86 и 77 равна 67.0999134
Ссылка на результат
?n1=147&n2=86&n3=77
Найти высоту треугольника со сторонами 141, 82 и 71
Найти высоту треугольника со сторонами 136, 94 и 47
Найти высоту треугольника со сторонами 107, 104 и 15
Найти высоту треугольника со сторонами 122, 110 и 14
Найти высоту треугольника со сторонами 144, 144 и 54
Найти высоту треугольника со сторонами 114, 75 и 47
Найти высоту треугольника со сторонами 136, 94 и 47
Найти высоту треугольника со сторонами 107, 104 и 15
Найти высоту треугольника со сторонами 122, 110 и 14
Найти высоту треугольника со сторонами 144, 144 и 54
Найти высоту треугольника со сторонами 114, 75 и 47