Рассчитать высоту треугольника со сторонами 147, 95 и 90

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{147 + 95 + 90}{2}} \normalsize = 166}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{166(166-147)(166-95)(166-90)}}{95}\normalsize = 86.8506765}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{166(166-147)(166-95)(166-90)}}{147}\normalsize = 56.1279882}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{166(166-147)(166-95)(166-90)}}{90}\normalsize = 91.675714}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 147, 95 и 90 равна 86.8506765
Высота треугольника опущенная с вершины A на сторону BC со сторонами 147, 95 и 90 равна 56.1279882
Высота треугольника опущенная с вершины C на сторону AB со сторонами 147, 95 и 90 равна 91.675714
Ссылка на результат
?n1=147&n2=95&n3=90