Рассчитать высоту треугольника со сторонами 147, 97 и 88

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{147 + 97 + 88}{2}} \normalsize = 166}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{166(166-147)(166-97)(166-88)}}{97}\normalsize = 84.9495246}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{166(166-147)(166-97)(166-88)}}{147}\normalsize = 56.0551285}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{166(166-147)(166-97)(166-88)}}{88}\normalsize = 93.6375441}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 147, 97 и 88 равна 84.9495246
Высота треугольника опущенная с вершины A на сторону BC со сторонами 147, 97 и 88 равна 56.0551285
Высота треугольника опущенная с вершины C на сторону AB со сторонами 147, 97 и 88 равна 93.6375441
Ссылка на результат
?n1=147&n2=97&n3=88