Рассчитать высоту треугольника со сторонами 147, 98 и 96
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{147 + 98 + 96}{2}} \normalsize = 170.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{170.5(170.5-147)(170.5-98)(170.5-96)}}{98}\normalsize = 94.939553}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{170.5(170.5-147)(170.5-98)(170.5-96)}}{147}\normalsize = 63.2930353}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{170.5(170.5-147)(170.5-98)(170.5-96)}}{96}\normalsize = 96.9174603}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 147, 98 и 96 равна 94.939553
Высота треугольника опущенная с вершины A на сторону BC со сторонами 147, 98 и 96 равна 63.2930353
Высота треугольника опущенная с вершины C на сторону AB со сторонами 147, 98 и 96 равна 96.9174603
Ссылка на результат
?n1=147&n2=98&n3=96
Найти высоту треугольника со сторонами 137, 107 и 62
Найти высоту треугольника со сторонами 104, 63 и 49
Найти высоту треугольника со сторонами 96, 66 и 44
Найти высоту треугольника со сторонами 59, 47 и 45
Найти высоту треугольника со сторонами 92, 84 и 55
Найти высоту треугольника со сторонами 138, 123 и 62
Найти высоту треугольника со сторонами 104, 63 и 49
Найти высоту треугольника со сторонами 96, 66 и 44
Найти высоту треугольника со сторонами 59, 47 и 45
Найти высоту треугольника со сторонами 92, 84 и 55
Найти высоту треугольника со сторонами 138, 123 и 62