Рассчитать высоту треугольника со сторонами 148, 102 и 74

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{148 + 102 + 74}{2}} \normalsize = 162}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{162(162-148)(162-102)(162-74)}}{102}\normalsize = 67.8528838}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{162(162-148)(162-102)(162-74)}}{148}\normalsize = 46.763474}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{162(162-148)(162-102)(162-74)}}{74}\normalsize = 93.5269479}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 148, 102 и 74 равна 67.8528838
Высота треугольника опущенная с вершины A на сторону BC со сторонами 148, 102 и 74 равна 46.763474
Высота треугольника опущенная с вершины C на сторону AB со сторонами 148, 102 и 74 равна 93.5269479
Ссылка на результат
?n1=148&n2=102&n3=74