Рассчитать высоту треугольника со сторонами 148, 103 и 66
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{148 + 103 + 66}{2}} \normalsize = 158.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{158.5(158.5-148)(158.5-103)(158.5-66)}}{103}\normalsize = 56.7569974}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{158.5(158.5-148)(158.5-103)(158.5-66)}}{148}\normalsize = 39.4998022}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{158.5(158.5-148)(158.5-103)(158.5-66)}}{66}\normalsize = 88.5753141}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 148, 103 и 66 равна 56.7569974
Высота треугольника опущенная с вершины A на сторону BC со сторонами 148, 103 и 66 равна 39.4998022
Высота треугольника опущенная с вершины C на сторону AB со сторонами 148, 103 и 66 равна 88.5753141
Ссылка на результат
?n1=148&n2=103&n3=66
Найти высоту треугольника со сторонами 110, 103 и 93
Найти высоту треугольника со сторонами 103, 73 и 64
Найти высоту треугольника со сторонами 53, 52 и 11
Найти высоту треугольника со сторонами 90, 78 и 52
Найти высоту треугольника со сторонами 145, 132 и 111
Найти высоту треугольника со сторонами 70, 62 и 57
Найти высоту треугольника со сторонами 103, 73 и 64
Найти высоту треугольника со сторонами 53, 52 и 11
Найти высоту треугольника со сторонами 90, 78 и 52
Найти высоту треугольника со сторонами 145, 132 и 111
Найти высоту треугольника со сторонами 70, 62 и 57