Рассчитать высоту треугольника со сторонами 148, 104 и 73
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{148 + 104 + 73}{2}} \normalsize = 162.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{162.5(162.5-148)(162.5-104)(162.5-73)}}{104}\normalsize = 67.5455575}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{162.5(162.5-148)(162.5-104)(162.5-73)}}{148}\normalsize = 47.4644458}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{162.5(162.5-148)(162.5-104)(162.5-73)}}{73}\normalsize = 96.2292875}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 148, 104 и 73 равна 67.5455575
Высота треугольника опущенная с вершины A на сторону BC со сторонами 148, 104 и 73 равна 47.4644458
Высота треугольника опущенная с вершины C на сторону AB со сторонами 148, 104 и 73 равна 96.2292875
Ссылка на результат
?n1=148&n2=104&n3=73
Найти высоту треугольника со сторонами 62, 61 и 33
Найти высоту треугольника со сторонами 51, 51 и 21
Найти высоту треугольника со сторонами 87, 86 и 41
Найти высоту треугольника со сторонами 140, 101 и 54
Найти высоту треугольника со сторонами 48, 43 и 25
Найти высоту треугольника со сторонами 143, 122 и 96
Найти высоту треугольника со сторонами 51, 51 и 21
Найти высоту треугольника со сторонами 87, 86 и 41
Найти высоту треугольника со сторонами 140, 101 и 54
Найти высоту треугольника со сторонами 48, 43 и 25
Найти высоту треугольника со сторонами 143, 122 и 96