Рассчитать высоту треугольника со сторонами 148, 111 и 89
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{148 + 111 + 89}{2}} \normalsize = 174}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{174(174-148)(174-111)(174-89)}}{111}\normalsize = 88.6845675}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{174(174-148)(174-111)(174-89)}}{148}\normalsize = 66.5134257}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{174(174-148)(174-111)(174-89)}}{89}\normalsize = 110.606595}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 148, 111 и 89 равна 88.6845675
Высота треугольника опущенная с вершины A на сторону BC со сторонами 148, 111 и 89 равна 66.5134257
Высота треугольника опущенная с вершины C на сторону AB со сторонами 148, 111 и 89 равна 110.606595
Ссылка на результат
?n1=148&n2=111&n3=89
Найти высоту треугольника со сторонами 119, 102 и 81
Найти высоту треугольника со сторонами 137, 134 и 101
Найти высоту треугольника со сторонами 128, 121 и 23
Найти высоту треугольника со сторонами 122, 63 и 60
Найти высоту треугольника со сторонами 124, 94 и 79
Найти высоту треугольника со сторонами 124, 118 и 86
Найти высоту треугольника со сторонами 137, 134 и 101
Найти высоту треугольника со сторонами 128, 121 и 23
Найти высоту треугольника со сторонами 122, 63 и 60
Найти высоту треугольника со сторонами 124, 94 и 79
Найти высоту треугольника со сторонами 124, 118 и 86