Рассчитать высоту треугольника со сторонами 148, 113 и 75
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{148 + 113 + 75}{2}} \normalsize = 168}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{168(168-148)(168-113)(168-75)}}{113}\normalsize = 73.3743066}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{168(168-148)(168-113)(168-75)}}{148}\normalsize = 56.0222746}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{168(168-148)(168-113)(168-75)}}{75}\normalsize = 110.550622}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 148, 113 и 75 равна 73.3743066
Высота треугольника опущенная с вершины A на сторону BC со сторонами 148, 113 и 75 равна 56.0222746
Высота треугольника опущенная с вершины C на сторону AB со сторонами 148, 113 и 75 равна 110.550622
Ссылка на результат
?n1=148&n2=113&n3=75
Найти высоту треугольника со сторонами 139, 135 и 132
Найти высоту треугольника со сторонами 109, 107 и 91
Найти высоту треугольника со сторонами 103, 82 и 68
Найти высоту треугольника со сторонами 63, 43 и 23
Найти высоту треугольника со сторонами 146, 143 и 109
Найти высоту треугольника со сторонами 143, 117 и 48
Найти высоту треугольника со сторонами 109, 107 и 91
Найти высоту треугольника со сторонами 103, 82 и 68
Найти высоту треугольника со сторонами 63, 43 и 23
Найти высоту треугольника со сторонами 146, 143 и 109
Найти высоту треугольника со сторонами 143, 117 и 48