Рассчитать высоту треугольника со сторонами 148, 116 и 89
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{148 + 116 + 89}{2}} \normalsize = 176.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{176.5(176.5-148)(176.5-116)(176.5-89)}}{116}\normalsize = 88.9710068}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{176.5(176.5-148)(176.5-116)(176.5-89)}}{148}\normalsize = 69.7340324}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{176.5(176.5-148)(176.5-116)(176.5-89)}}{89}\normalsize = 115.962211}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 148, 116 и 89 равна 88.9710068
Высота треугольника опущенная с вершины A на сторону BC со сторонами 148, 116 и 89 равна 69.7340324
Высота треугольника опущенная с вершины C на сторону AB со сторонами 148, 116 и 89 равна 115.962211
Ссылка на результат
?n1=148&n2=116&n3=89
Найти высоту треугольника со сторонами 62, 59 и 13
Найти высоту треугольника со сторонами 87, 87 и 70
Найти высоту треугольника со сторонами 128, 126 и 68
Найти высоту треугольника со сторонами 74, 62 и 13
Найти высоту треугольника со сторонами 144, 124 и 76
Найти высоту треугольника со сторонами 139, 135 и 123
Найти высоту треугольника со сторонами 87, 87 и 70
Найти высоту треугольника со сторонами 128, 126 и 68
Найти высоту треугольника со сторонами 74, 62 и 13
Найти высоту треугольника со сторонами 144, 124 и 76
Найти высоту треугольника со сторонами 139, 135 и 123