Рассчитать высоту треугольника со сторонами 148, 117 и 56
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{148 + 117 + 56}{2}} \normalsize = 160.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{160.5(160.5-148)(160.5-117)(160.5-56)}}{117}\normalsize = 51.6225475}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{160.5(160.5-148)(160.5-117)(160.5-56)}}{148}\normalsize = 40.8097166}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{160.5(160.5-148)(160.5-117)(160.5-56)}}{56}\normalsize = 107.854251}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 148, 117 и 56 равна 51.6225475
Высота треугольника опущенная с вершины A на сторону BC со сторонами 148, 117 и 56 равна 40.8097166
Высота треугольника опущенная с вершины C на сторону AB со сторонами 148, 117 и 56 равна 107.854251
Ссылка на результат
?n1=148&n2=117&n3=56
Найти высоту треугольника со сторонами 118, 102 и 66
Найти высоту треугольника со сторонами 53, 40 и 40
Найти высоту треугольника со сторонами 87, 70 и 63
Найти высоту треугольника со сторонами 116, 69 и 64
Найти высоту треугольника со сторонами 130, 129 и 17
Найти высоту треугольника со сторонами 147, 141 и 51
Найти высоту треугольника со сторонами 53, 40 и 40
Найти высоту треугольника со сторонами 87, 70 и 63
Найти высоту треугольника со сторонами 116, 69 и 64
Найти высоту треугольника со сторонами 130, 129 и 17
Найти высоту треугольника со сторонами 147, 141 и 51