Рассчитать высоту треугольника со сторонами 148, 117 и 77
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{148 + 117 + 77}{2}} \normalsize = 171}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{171(171-148)(171-117)(171-77)}}{117}\normalsize = 76.3777594}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{171(171-148)(171-117)(171-77)}}{148}\normalsize = 60.3797152}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{171(171-148)(171-117)(171-77)}}{77}\normalsize = 116.054518}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 148, 117 и 77 равна 76.3777594
Высота треугольника опущенная с вершины A на сторону BC со сторонами 148, 117 и 77 равна 60.3797152
Высота треугольника опущенная с вершины C на сторону AB со сторонами 148, 117 и 77 равна 116.054518
Ссылка на результат
?n1=148&n2=117&n3=77
Найти высоту треугольника со сторонами 115, 115 и 98
Найти высоту треугольника со сторонами 80, 75 и 69
Найти высоту треугольника со сторонами 105, 68 и 57
Найти высоту треугольника со сторонами 123, 87 и 56
Найти высоту треугольника со сторонами 138, 93 и 86
Найти высоту треугольника со сторонами 55, 46 и 17
Найти высоту треугольника со сторонами 80, 75 и 69
Найти высоту треугольника со сторонами 105, 68 и 57
Найти высоту треугольника со сторонами 123, 87 и 56
Найти высоту треугольника со сторонами 138, 93 и 86
Найти высоту треугольника со сторонами 55, 46 и 17