Рассчитать высоту треугольника со сторонами 148, 117 и 82
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{148 + 117 + 82}{2}} \normalsize = 173.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{173.5(173.5-148)(173.5-117)(173.5-82)}}{117}\normalsize = 81.7520656}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{173.5(173.5-148)(173.5-117)(173.5-82)}}{148}\normalsize = 64.6283221}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{173.5(173.5-148)(173.5-117)(173.5-82)}}{82}\normalsize = 116.64624}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 148, 117 и 82 равна 81.7520656
Высота треугольника опущенная с вершины A на сторону BC со сторонами 148, 117 и 82 равна 64.6283221
Высота треугольника опущенная с вершины C на сторону AB со сторонами 148, 117 и 82 равна 116.64624
Ссылка на результат
?n1=148&n2=117&n3=82
Найти высоту треугольника со сторонами 146, 135 и 47
Найти высоту треугольника со сторонами 77, 72 и 17
Найти высоту треугольника со сторонами 60, 37 и 26
Найти высоту треугольника со сторонами 115, 96 и 88
Найти высоту треугольника со сторонами 144, 116 и 105
Найти высоту треугольника со сторонами 76, 64 и 42
Найти высоту треугольника со сторонами 77, 72 и 17
Найти высоту треугольника со сторонами 60, 37 и 26
Найти высоту треугольника со сторонами 115, 96 и 88
Найти высоту треугольника со сторонами 144, 116 и 105
Найти высоту треугольника со сторонами 76, 64 и 42