Рассчитать высоту треугольника со сторонами 148, 124 и 116

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{148 + 124 + 116}{2}} \normalsize = 194}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{194(194-148)(194-124)(194-116)}}{124}\normalsize = 112.586006}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{194(194-148)(194-124)(194-116)}}{148}\normalsize = 94.3288158}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{194(194-148)(194-124)(194-116)}}{116}\normalsize = 120.350558}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 148, 124 и 116 равна 112.586006
Высота треугольника опущенная с вершины A на сторону BC со сторонами 148, 124 и 116 равна 94.3288158
Высота треугольника опущенная с вершины C на сторону AB со сторонами 148, 124 и 116 равна 120.350558
Ссылка на результат
?n1=148&n2=124&n3=116