Рассчитать высоту треугольника со сторонами 148, 126 и 29
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{148 + 126 + 29}{2}} \normalsize = 151.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{151.5(151.5-148)(151.5-126)(151.5-29)}}{126}\normalsize = 20.428568}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{151.5(151.5-148)(151.5-126)(151.5-29)}}{148}\normalsize = 17.3918889}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{151.5(151.5-148)(151.5-126)(151.5-29)}}{29}\normalsize = 88.7586056}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 148, 126 и 29 равна 20.428568
Высота треугольника опущенная с вершины A на сторону BC со сторонами 148, 126 и 29 равна 17.3918889
Высота треугольника опущенная с вершины C на сторону AB со сторонами 148, 126 и 29 равна 88.7586056
Ссылка на результат
?n1=148&n2=126&n3=29
Найти высоту треугольника со сторонами 102, 81 и 53
Найти высоту треугольника со сторонами 129, 114 и 17
Найти высоту треугольника со сторонами 144, 140 и 16
Найти высоту треугольника со сторонами 133, 132 и 34
Найти высоту треугольника со сторонами 106, 87 и 38
Найти высоту треугольника со сторонами 135, 106 и 86
Найти высоту треугольника со сторонами 129, 114 и 17
Найти высоту треугольника со сторонами 144, 140 и 16
Найти высоту треугольника со сторонами 133, 132 и 34
Найти высоту треугольника со сторонами 106, 87 и 38
Найти высоту треугольника со сторонами 135, 106 и 86