Рассчитать высоту треугольника со сторонами 148, 128 и 84

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{148 + 128 + 84}{2}} \normalsize = 180}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{180(180-148)(180-128)(180-84)}}{128}\normalsize = 83.7854403}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{180(180-148)(180-128)(180-84)}}{148}\normalsize = 72.4630835}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{180(180-148)(180-128)(180-84)}}{84}\normalsize = 127.673052}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 148, 128 и 84 равна 83.7854403
Высота треугольника опущенная с вершины A на сторону BC со сторонами 148, 128 и 84 равна 72.4630835
Высота треугольника опущенная с вершины C на сторону AB со сторонами 148, 128 и 84 равна 127.673052
Ссылка на результат
?n1=148&n2=128&n3=84