Рассчитать высоту треугольника со сторонами 148, 129 и 80
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{148 + 129 + 80}{2}} \normalsize = 178.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{178.5(178.5-148)(178.5-129)(178.5-80)}}{129}\normalsize = 79.8785237}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{178.5(178.5-148)(178.5-129)(178.5-80)}}{148}\normalsize = 69.6238484}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{178.5(178.5-148)(178.5-129)(178.5-80)}}{80}\normalsize = 128.80412}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 148, 129 и 80 равна 79.8785237
Высота треугольника опущенная с вершины A на сторону BC со сторонами 148, 129 и 80 равна 69.6238484
Высота треугольника опущенная с вершины C на сторону AB со сторонами 148, 129 и 80 равна 128.80412
Ссылка на результат
?n1=148&n2=129&n3=80
Найти высоту треугольника со сторонами 71, 65 и 22
Найти высоту треугольника со сторонами 122, 83 и 65
Найти высоту треугольника со сторонами 138, 116 и 96
Найти высоту треугольника со сторонами 94, 91 и 83
Найти высоту треугольника со сторонами 146, 143 и 107
Найти высоту треугольника со сторонами 64, 54 и 38
Найти высоту треугольника со сторонами 122, 83 и 65
Найти высоту треугольника со сторонами 138, 116 и 96
Найти высоту треугольника со сторонами 94, 91 и 83
Найти высоту треугольника со сторонами 146, 143 и 107
Найти высоту треугольника со сторонами 64, 54 и 38