Рассчитать высоту треугольника со сторонами 148, 130 и 71
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{148 + 130 + 71}{2}} \normalsize = 174.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{174.5(174.5-148)(174.5-130)(174.5-71)}}{130}\normalsize = 70.9998574}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{174.5(174.5-148)(174.5-130)(174.5-71)}}{148}\normalsize = 62.3647396}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{174.5(174.5-148)(174.5-130)(174.5-71)}}{71}\normalsize = 129.999739}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 148, 130 и 71 равна 70.9998574
Высота треугольника опущенная с вершины A на сторону BC со сторонами 148, 130 и 71 равна 62.3647396
Высота треугольника опущенная с вершины C на сторону AB со сторонами 148, 130 и 71 равна 129.999739
Ссылка на результат
?n1=148&n2=130&n3=71
Найти высоту треугольника со сторонами 109, 96 и 53
Найти высоту треугольника со сторонами 98, 91 и 17
Найти высоту треугольника со сторонами 73, 71 и 56
Найти высоту треугольника со сторонами 93, 92 и 7
Найти высоту треугольника со сторонами 121, 120 и 50
Найти высоту треугольника со сторонами 107, 88 и 68
Найти высоту треугольника со сторонами 98, 91 и 17
Найти высоту треугольника со сторонами 73, 71 и 56
Найти высоту треугольника со сторонами 93, 92 и 7
Найти высоту треугольника со сторонами 121, 120 и 50
Найти высоту треугольника со сторонами 107, 88 и 68