Рассчитать высоту треугольника со сторонами 148, 132 и 27
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{148 + 132 + 27}{2}} \normalsize = 153.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{153.5(153.5-148)(153.5-132)(153.5-27)}}{132}\normalsize = 22.9591651}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{153.5(153.5-148)(153.5-132)(153.5-27)}}{148}\normalsize = 20.4770932}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{153.5(153.5-148)(153.5-132)(153.5-27)}}{27}\normalsize = 112.244807}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 148, 132 и 27 равна 22.9591651
Высота треугольника опущенная с вершины A на сторону BC со сторонами 148, 132 и 27 равна 20.4770932
Высота треугольника опущенная с вершины C на сторону AB со сторонами 148, 132 и 27 равна 112.244807
Ссылка на результат
?n1=148&n2=132&n3=27
Найти высоту треугольника со сторонами 60, 55 и 18
Найти высоту треугольника со сторонами 86, 67 и 38
Найти высоту треугольника со сторонами 65, 36 и 32
Найти высоту треугольника со сторонами 106, 89 и 59
Найти высоту треугольника со сторонами 129, 117 и 85
Найти высоту треугольника со сторонами 129, 129 и 63
Найти высоту треугольника со сторонами 86, 67 и 38
Найти высоту треугольника со сторонами 65, 36 и 32
Найти высоту треугольника со сторонами 106, 89 и 59
Найти высоту треугольника со сторонами 129, 117 и 85
Найти высоту треугольника со сторонами 129, 129 и 63