Рассчитать высоту треугольника со сторонами 148, 133 и 47
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{148 + 133 + 47}{2}} \normalsize = 164}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{164(164-148)(164-133)(164-47)}}{133}\normalsize = 46.3910335}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{164(164-148)(164-133)(164-47)}}{148}\normalsize = 41.6892396}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{164(164-148)(164-133)(164-47)}}{47}\normalsize = 131.276754}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 148, 133 и 47 равна 46.3910335
Высота треугольника опущенная с вершины A на сторону BC со сторонами 148, 133 и 47 равна 41.6892396
Высота треугольника опущенная с вершины C на сторону AB со сторонами 148, 133 и 47 равна 131.276754
Ссылка на результат
?n1=148&n2=133&n3=47
Найти высоту треугольника со сторонами 128, 118 и 103
Найти высоту треугольника со сторонами 83, 72 и 35
Найти высоту треугольника со сторонами 59, 52 и 19
Найти высоту треугольника со сторонами 149, 135 и 73
Найти высоту треугольника со сторонами 105, 60 и 49
Найти высоту треугольника со сторонами 91, 57 и 44
Найти высоту треугольника со сторонами 83, 72 и 35
Найти высоту треугольника со сторонами 59, 52 и 19
Найти высоту треугольника со сторонами 149, 135 и 73
Найти высоту треугольника со сторонами 105, 60 и 49
Найти высоту треугольника со сторонами 91, 57 и 44