Рассчитать высоту треугольника со сторонами 148, 138 и 112
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{148 + 138 + 112}{2}} \normalsize = 199}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{199(199-148)(199-138)(199-112)}}{138}\normalsize = 106.362143}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{199(199-148)(199-138)(199-112)}}{148}\normalsize = 99.1755118}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{199(199-148)(199-138)(199-112)}}{112}\normalsize = 131.053355}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 148, 138 и 112 равна 106.362143
Высота треугольника опущенная с вершины A на сторону BC со сторонами 148, 138 и 112 равна 99.1755118
Высота треугольника опущенная с вершины C на сторону AB со сторонами 148, 138 и 112 равна 131.053355
Ссылка на результат
?n1=148&n2=138&n3=112
Найти высоту треугольника со сторонами 79, 48 и 47
Найти высоту треугольника со сторонами 70, 39 и 33
Найти высоту треугольника со сторонами 100, 81 и 57
Найти высоту треугольника со сторонами 119, 105 и 97
Найти высоту треугольника со сторонами 113, 103 и 88
Найти высоту треугольника со сторонами 144, 93 и 64
Найти высоту треугольника со сторонами 70, 39 и 33
Найти высоту треугольника со сторонами 100, 81 и 57
Найти высоту треугольника со сторонами 119, 105 и 97
Найти высоту треугольника со сторонами 113, 103 и 88
Найти высоту треугольника со сторонами 144, 93 и 64