Рассчитать высоту треугольника со сторонами 148, 146 и 124
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{148 + 146 + 124}{2}} \normalsize = 209}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{209(209-148)(209-146)(209-124)}}{146}\normalsize = 113.18658}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{209(209-148)(209-146)(209-124)}}{148}\normalsize = 111.657032}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{209(209-148)(209-146)(209-124)}}{124}\normalsize = 133.26807}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 148, 146 и 124 равна 113.18658
Высота треугольника опущенная с вершины A на сторону BC со сторонами 148, 146 и 124 равна 111.657032
Высота треугольника опущенная с вершины C на сторону AB со сторонами 148, 146 и 124 равна 133.26807
Ссылка на результат
?n1=148&n2=146&n3=124
Найти высоту треугольника со сторонами 90, 85 и 35
Найти высоту треугольника со сторонами 145, 143 и 24
Найти высоту треугольника со сторонами 113, 109 и 9
Найти высоту треугольника со сторонами 125, 87 и 87
Найти высоту треугольника со сторонами 114, 80 и 79
Найти высоту треугольника со сторонами 147, 114 и 98
Найти высоту треугольника со сторонами 145, 143 и 24
Найти высоту треугольника со сторонами 113, 109 и 9
Найти высоту треугольника со сторонами 125, 87 и 87
Найти высоту треугольника со сторонами 114, 80 и 79
Найти высоту треугольника со сторонами 147, 114 и 98