Рассчитать высоту треугольника со сторонами 148, 148 и 96
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{148 + 148 + 96}{2}} \normalsize = 196}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{196(196-148)(196-148)(196-96)}}{148}\normalsize = 90.8108108}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{196(196-148)(196-148)(196-96)}}{148}\normalsize = 90.8108108}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{196(196-148)(196-148)(196-96)}}{96}\normalsize = 140}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 148, 148 и 96 равна 90.8108108
Высота треугольника опущенная с вершины A на сторону BC со сторонами 148, 148 и 96 равна 90.8108108
Высота треугольника опущенная с вершины C на сторону AB со сторонами 148, 148 и 96 равна 140
Ссылка на результат
?n1=148&n2=148&n3=96
Найти высоту треугольника со сторонами 144, 124 и 28
Найти высоту треугольника со сторонами 80, 57 и 55
Найти высоту треугольника со сторонами 130, 74 и 61
Найти высоту треугольника со сторонами 85, 73 и 43
Найти высоту треугольника со сторонами 118, 80 и 63
Найти высоту треугольника со сторонами 138, 95 и 55
Найти высоту треугольника со сторонами 80, 57 и 55
Найти высоту треугольника со сторонами 130, 74 и 61
Найти высоту треугольника со сторонами 85, 73 и 43
Найти высоту треугольника со сторонами 118, 80 и 63
Найти высоту треугольника со сторонами 138, 95 и 55