Рассчитать высоту треугольника со сторонами 148, 89 и 63
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{148 + 89 + 63}{2}} \normalsize = 150}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{150(150-148)(150-89)(150-63)}}{89}\normalsize = 28.3547068}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{150(150-148)(150-89)(150-63)}}{148}\normalsize = 17.0511412}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{150(150-148)(150-89)(150-63)}}{63}\normalsize = 40.0566492}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 148, 89 и 63 равна 28.3547068
Высота треугольника опущенная с вершины A на сторону BC со сторонами 148, 89 и 63 равна 17.0511412
Высота треугольника опущенная с вершины C на сторону AB со сторонами 148, 89 и 63 равна 40.0566492
Ссылка на результат
?n1=148&n2=89&n3=63
Найти высоту треугольника со сторонами 147, 91 и 60
Найти высоту треугольника со сторонами 119, 73 и 65
Найти высоту треугольника со сторонами 140, 104 и 62
Найти высоту треугольника со сторонами 142, 130 и 36
Найти высоту треугольника со сторонами 124, 112 и 78
Найти высоту треугольника со сторонами 63, 56 и 9
Найти высоту треугольника со сторонами 119, 73 и 65
Найти высоту треугольника со сторонами 140, 104 и 62
Найти высоту треугольника со сторонами 142, 130 и 36
Найти высоту треугольника со сторонами 124, 112 и 78
Найти высоту треугольника со сторонами 63, 56 и 9