Рассчитать высоту треугольника со сторонами 148, 96 и 74
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{148 + 96 + 74}{2}} \normalsize = 159}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{159(159-148)(159-96)(159-74)}}{96}\normalsize = 63.757812}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{159(159-148)(159-96)(159-74)}}{148}\normalsize = 41.3564186}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{159(159-148)(159-96)(159-74)}}{74}\normalsize = 82.7128372}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 148, 96 и 74 равна 63.757812
Высота треугольника опущенная с вершины A на сторону BC со сторонами 148, 96 и 74 равна 41.3564186
Высота треугольника опущенная с вершины C на сторону AB со сторонами 148, 96 и 74 равна 82.7128372
Ссылка на результат
?n1=148&n2=96&n3=74
Найти высоту треугольника со сторонами 109, 79 и 41
Найти высоту треугольника со сторонами 123, 110 и 64
Найти высоту треугольника со сторонами 99, 94 и 31
Найти высоту треугольника со сторонами 140, 83 и 66
Найти высоту треугольника со сторонами 121, 109 и 49
Найти высоту треугольника со сторонами 62, 51 и 28
Найти высоту треугольника со сторонами 123, 110 и 64
Найти высоту треугольника со сторонами 99, 94 и 31
Найти высоту треугольника со сторонами 140, 83 и 66
Найти высоту треугольника со сторонами 121, 109 и 49
Найти высоту треугольника со сторонами 62, 51 и 28