Рассчитать высоту треугольника со сторонами 149, 101 и 58
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{149 + 101 + 58}{2}} \normalsize = 154}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{154(154-149)(154-101)(154-58)}}{101}\normalsize = 39.1947172}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{154(154-149)(154-101)(154-58)}}{149}\normalsize = 26.5682312}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{154(154-149)(154-101)(154-58)}}{58}\normalsize = 68.2528697}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 149, 101 и 58 равна 39.1947172
Высота треугольника опущенная с вершины A на сторону BC со сторонами 149, 101 и 58 равна 26.5682312
Высота треугольника опущенная с вершины C на сторону AB со сторонами 149, 101 и 58 равна 68.2528697
Ссылка на результат
?n1=149&n2=101&n3=58
Найти высоту треугольника со сторонами 86, 62 и 32
Найти высоту треугольника со сторонами 109, 109 и 86
Найти высоту треугольника со сторонами 95, 60 и 39
Найти высоту треугольника со сторонами 122, 112 и 81
Найти высоту треугольника со сторонами 148, 137 и 105
Найти высоту треугольника со сторонами 150, 84 и 82
Найти высоту треугольника со сторонами 109, 109 и 86
Найти высоту треугольника со сторонами 95, 60 и 39
Найти высоту треугольника со сторонами 122, 112 и 81
Найти высоту треугольника со сторонами 148, 137 и 105
Найти высоту треугольника со сторонами 150, 84 и 82