Рассчитать высоту треугольника со сторонами 149, 103 и 57

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{149 + 103 + 57}{2}} \normalsize = 154.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{154.5(154.5-149)(154.5-103)(154.5-57)}}{103}\normalsize = 40.1092259}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{154.5(154.5-149)(154.5-103)(154.5-57)}}{149}\normalsize = 27.7265118}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{154.5(154.5-149)(154.5-103)(154.5-57)}}{57}\normalsize = 72.4780748}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 149, 103 и 57 равна 40.1092259
Высота треугольника опущенная с вершины A на сторону BC со сторонами 149, 103 и 57 равна 27.7265118
Высота треугольника опущенная с вершины C на сторону AB со сторонами 149, 103 и 57 равна 72.4780748
Ссылка на результат
?n1=149&n2=103&n3=57