Рассчитать высоту треугольника со сторонами 149, 105 и 50

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{149 + 105 + 50}{2}} \normalsize = 152}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{152(152-149)(152-105)(152-50)}}{105}\normalsize = 28.1625602}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{152(152-149)(152-105)(152-50)}}{149}\normalsize = 19.8460995}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{152(152-149)(152-105)(152-50)}}{50}\normalsize = 59.1413764}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 149, 105 и 50 равна 28.1625602
Высота треугольника опущенная с вершины A на сторону BC со сторонами 149, 105 и 50 равна 19.8460995
Высота треугольника опущенная с вершины C на сторону AB со сторонами 149, 105 и 50 равна 59.1413764
Ссылка на результат
?n1=149&n2=105&n3=50