Рассчитать высоту треугольника со сторонами 149, 107 и 77
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{149 + 107 + 77}{2}} \normalsize = 166.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{166.5(166.5-149)(166.5-107)(166.5-77)}}{107}\normalsize = 73.6278912}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{166.5(166.5-149)(166.5-107)(166.5-77)}}{149}\normalsize = 52.8737205}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{166.5(166.5-149)(166.5-107)(166.5-77)}}{77}\normalsize = 102.314083}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 149, 107 и 77 равна 73.6278912
Высота треугольника опущенная с вершины A на сторону BC со сторонами 149, 107 и 77 равна 52.8737205
Высота треугольника опущенная с вершины C на сторону AB со сторонами 149, 107 и 77 равна 102.314083
Ссылка на результат
?n1=149&n2=107&n3=77
Найти высоту треугольника со сторонами 140, 132 и 78
Найти высоту треугольника со сторонами 108, 71 и 51
Найти высоту треугольника со сторонами 143, 135 и 102
Найти высоту треугольника со сторонами 105, 100 и 88
Найти высоту треугольника со сторонами 114, 72 и 45
Найти высоту треугольника со сторонами 136, 93 и 73
Найти высоту треугольника со сторонами 108, 71 и 51
Найти высоту треугольника со сторонами 143, 135 и 102
Найти высоту треугольника со сторонами 105, 100 и 88
Найти высоту треугольника со сторонами 114, 72 и 45
Найти высоту треугольника со сторонами 136, 93 и 73