Рассчитать высоту треугольника со сторонами 149, 107 и 83
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{149 + 107 + 83}{2}} \normalsize = 169.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{169.5(169.5-149)(169.5-107)(169.5-83)}}{107}\normalsize = 81.0132513}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{169.5(169.5-149)(169.5-107)(169.5-83)}}{149}\normalsize = 58.1773013}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{169.5(169.5-149)(169.5-107)(169.5-83)}}{83}\normalsize = 104.43877}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 149, 107 и 83 равна 81.0132513
Высота треугольника опущенная с вершины A на сторону BC со сторонами 149, 107 и 83 равна 58.1773013
Высота треугольника опущенная с вершины C на сторону AB со сторонами 149, 107 и 83 равна 104.43877
Ссылка на результат
?n1=149&n2=107&n3=83
Найти высоту треугольника со сторонами 134, 102 и 97
Найти высоту треугольника со сторонами 129, 129 и 2
Найти высоту треугольника со сторонами 115, 112 и 52
Найти высоту треугольника со сторонами 111, 63 и 51
Найти высоту треугольника со сторонами 143, 120 и 61
Найти высоту треугольника со сторонами 143, 131 и 108
Найти высоту треугольника со сторонами 129, 129 и 2
Найти высоту треугольника со сторонами 115, 112 и 52
Найти высоту треугольника со сторонами 111, 63 и 51
Найти высоту треугольника со сторонами 143, 120 и 61
Найти высоту треугольника со сторонами 143, 131 и 108