Рассчитать высоту треугольника со сторонами 149, 108 и 42

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{149 + 108 + 42}{2}} \normalsize = 149.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{149.5(149.5-149)(149.5-108)(149.5-42)}}{108}\normalsize = 10.6939985}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{149.5(149.5-149)(149.5-108)(149.5-42)}}{149}\normalsize = 7.75135462}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{149.5(149.5-149)(149.5-108)(149.5-42)}}{42}\normalsize = 27.4988533}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 149, 108 и 42 равна 10.6939985
Высота треугольника опущенная с вершины A на сторону BC со сторонами 149, 108 и 42 равна 7.75135462
Высота треугольника опущенная с вершины C на сторону AB со сторонами 149, 108 и 42 равна 27.4988533
Ссылка на результат
?n1=149&n2=108&n3=42