Рассчитать высоту треугольника со сторонами 149, 113 и 37
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{149 + 113 + 37}{2}} \normalsize = 149.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{149.5(149.5-149)(149.5-113)(149.5-37)}}{113}\normalsize = 9.80572804}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{149.5(149.5-149)(149.5-113)(149.5-37)}}{149}\normalsize = 7.43655885}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{149.5(149.5-149)(149.5-113)(149.5-37)}}{37}\normalsize = 29.9472235}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 149, 113 и 37 равна 9.80572804
Высота треугольника опущенная с вершины A на сторону BC со сторонами 149, 113 и 37 равна 7.43655885
Высота треугольника опущенная с вершины C на сторону AB со сторонами 149, 113 и 37 равна 29.9472235
Ссылка на результат
?n1=149&n2=113&n3=37
Найти высоту треугольника со сторонами 126, 122 и 92
Найти высоту треугольника со сторонами 90, 77 и 66
Найти высоту треугольника со сторонами 92, 89 и 87
Найти высоту треугольника со сторонами 144, 132 и 40
Найти высоту треугольника со сторонами 118, 104 и 33
Найти высоту треугольника со сторонами 89, 79 и 32
Найти высоту треугольника со сторонами 90, 77 и 66
Найти высоту треугольника со сторонами 92, 89 и 87
Найти высоту треугольника со сторонами 144, 132 и 40
Найти высоту треугольника со сторонами 118, 104 и 33
Найти высоту треугольника со сторонами 89, 79 и 32