Рассчитать высоту треугольника со сторонами 149, 113 и 72
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{149 + 113 + 72}{2}} \normalsize = 167}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{167(167-149)(167-113)(167-72)}}{113}\normalsize = 69.5031876}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{167(167-149)(167-113)(167-72)}}{149}\normalsize = 52.7104711}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{167(167-149)(167-113)(167-72)}}{72}\normalsize = 109.081392}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 149, 113 и 72 равна 69.5031876
Высота треугольника опущенная с вершины A на сторону BC со сторонами 149, 113 и 72 равна 52.7104711
Высота треугольника опущенная с вершины C на сторону AB со сторонами 149, 113 и 72 равна 109.081392
Ссылка на результат
?n1=149&n2=113&n3=72
Найти высоту треугольника со сторонами 113, 98 и 90
Найти высоту треугольника со сторонами 121, 105 и 17
Найти высоту треугольника со сторонами 145, 73 и 73
Найти высоту треугольника со сторонами 146, 111 и 63
Найти высоту треугольника со сторонами 91, 78 и 26
Найти высоту треугольника со сторонами 73, 60 и 28
Найти высоту треугольника со сторонами 121, 105 и 17
Найти высоту треугольника со сторонами 145, 73 и 73
Найти высоту треугольника со сторонами 146, 111 и 63
Найти высоту треугольника со сторонами 91, 78 и 26
Найти высоту треугольника со сторонами 73, 60 и 28