Рассчитать высоту треугольника со сторонами 149, 114 и 72

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{149 + 114 + 72}{2}} \normalsize = 167.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{167.5(167.5-149)(167.5-114)(167.5-72)}}{114}\normalsize = 69.8066812}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{167.5(167.5-149)(167.5-114)(167.5-72)}}{149}\normalsize = 53.4091386}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{167.5(167.5-149)(167.5-114)(167.5-72)}}{72}\normalsize = 110.527245}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 149, 114 и 72 равна 69.8066812
Высота треугольника опущенная с вершины A на сторону BC со сторонами 149, 114 и 72 равна 53.4091386
Высота треугольника опущенная с вершины C на сторону AB со сторонами 149, 114 и 72 равна 110.527245
Ссылка на результат
?n1=149&n2=114&n3=72