Рассчитать высоту треугольника со сторонами 149, 121 и 115
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{149 + 121 + 115}{2}} \normalsize = 192.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{192.5(192.5-149)(192.5-121)(192.5-115)}}{121}\normalsize = 112.592249}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{192.5(192.5-149)(192.5-121)(192.5-115)}}{149}\normalsize = 91.4339738}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{192.5(192.5-149)(192.5-121)(192.5-115)}}{115}\normalsize = 118.466627}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 149, 121 и 115 равна 112.592249
Высота треугольника опущенная с вершины A на сторону BC со сторонами 149, 121 и 115 равна 91.4339738
Высота треугольника опущенная с вершины C на сторону AB со сторонами 149, 121 и 115 равна 118.466627
Ссылка на результат
?n1=149&n2=121&n3=115
Найти высоту треугольника со сторонами 150, 129 и 71
Найти высоту треугольника со сторонами 150, 91 и 79
Найти высоту треугольника со сторонами 98, 83 и 61
Найти высоту треугольника со сторонами 52, 51 и 26
Найти высоту треугольника со сторонами 33, 29 и 12
Найти высоту треугольника со сторонами 104, 101 и 15
Найти высоту треугольника со сторонами 150, 91 и 79
Найти высоту треугольника со сторонами 98, 83 и 61
Найти высоту треугольника со сторонами 52, 51 и 26
Найти высоту треугольника со сторонами 33, 29 и 12
Найти высоту треугольника со сторонами 104, 101 и 15