Рассчитать высоту треугольника со сторонами 149, 121 и 70
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{149 + 121 + 70}{2}} \normalsize = 170}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{170(170-149)(170-121)(170-70)}}{121}\normalsize = 69.1316263}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{170(170-149)(170-121)(170-70)}}{149}\normalsize = 56.1404482}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{170(170-149)(170-121)(170-70)}}{70}\normalsize = 119.498954}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 149, 121 и 70 равна 69.1316263
Высота треугольника опущенная с вершины A на сторону BC со сторонами 149, 121 и 70 равна 56.1404482
Высота треугольника опущенная с вершины C на сторону AB со сторонами 149, 121 и 70 равна 119.498954
Ссылка на результат
?n1=149&n2=121&n3=70
Найти высоту треугольника со сторонами 82, 58 и 40
Найти высоту треугольника со сторонами 106, 93 и 29
Найти высоту треугольника со сторонами 108, 102 и 99
Найти высоту треугольника со сторонами 147, 126 и 22
Найти высоту треугольника со сторонами 125, 124 и 54
Найти высоту треугольника со сторонами 123, 85 и 48
Найти высоту треугольника со сторонами 106, 93 и 29
Найти высоту треугольника со сторонами 108, 102 и 99
Найти высоту треугольника со сторонами 147, 126 и 22
Найти высоту треугольника со сторонами 125, 124 и 54
Найти высоту треугольника со сторонами 123, 85 и 48