Рассчитать высоту треугольника со сторонами 149, 122 и 59
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{149 + 122 + 59}{2}} \normalsize = 165}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{165(165-149)(165-122)(165-59)}}{122}\normalsize = 56.8668653}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{165(165-149)(165-122)(165-59)}}{149}\normalsize = 46.5621313}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{165(165-149)(165-122)(165-59)}}{59}\normalsize = 117.589111}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 149, 122 и 59 равна 56.8668653
Высота треугольника опущенная с вершины A на сторону BC со сторонами 149, 122 и 59 равна 46.5621313
Высота треугольника опущенная с вершины C на сторону AB со сторонами 149, 122 и 59 равна 117.589111
Ссылка на результат
?n1=149&n2=122&n3=59
Найти высоту треугольника со сторонами 85, 83 и 57
Найти высоту треугольника со сторонами 119, 96 и 76
Найти высоту треугольника со сторонами 67, 58 и 17
Найти высоту треугольника со сторонами 140, 111 и 57
Найти высоту треугольника со сторонами 102, 100 и 16
Найти высоту треугольника со сторонами 111, 85 и 73
Найти высоту треугольника со сторонами 119, 96 и 76
Найти высоту треугольника со сторонами 67, 58 и 17
Найти высоту треугольника со сторонами 140, 111 и 57
Найти высоту треугольника со сторонами 102, 100 и 16
Найти высоту треугольника со сторонами 111, 85 и 73