Рассчитать высоту треугольника со сторонами 149, 122 и 78
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{149 + 122 + 78}{2}} \normalsize = 174.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{174.5(174.5-149)(174.5-122)(174.5-78)}}{122}\normalsize = 77.836138}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{174.5(174.5-149)(174.5-122)(174.5-78)}}{149}\normalsize = 63.7316029}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{174.5(174.5-149)(174.5-122)(174.5-78)}}{78}\normalsize = 121.743703}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 149, 122 и 78 равна 77.836138
Высота треугольника опущенная с вершины A на сторону BC со сторонами 149, 122 и 78 равна 63.7316029
Высота треугольника опущенная с вершины C на сторону AB со сторонами 149, 122 и 78 равна 121.743703
Ссылка на результат
?n1=149&n2=122&n3=78
Найти высоту треугольника со сторонами 109, 108 и 9
Найти высоту треугольника со сторонами 105, 65 и 49
Найти высоту треугольника со сторонами 146, 104 и 55
Найти высоту треугольника со сторонами 70, 64 и 55
Найти высоту треугольника со сторонами 86, 78 и 14
Найти высоту треугольника со сторонами 101, 90 и 68
Найти высоту треугольника со сторонами 105, 65 и 49
Найти высоту треугольника со сторонами 146, 104 и 55
Найти высоту треугольника со сторонами 70, 64 и 55
Найти высоту треугольника со сторонами 86, 78 и 14
Найти высоту треугольника со сторонами 101, 90 и 68