Рассчитать высоту треугольника со сторонами 149, 123 и 76
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{149 + 123 + 76}{2}} \normalsize = 174}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{174(174-149)(174-123)(174-76)}}{123}\normalsize = 75.817182}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{174(174-149)(174-123)(174-76)}}{149}\normalsize = 62.5873382}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{174(174-149)(174-123)(174-76)}}{76}\normalsize = 122.704124}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 149, 123 и 76 равна 75.817182
Высота треугольника опущенная с вершины A на сторону BC со сторонами 149, 123 и 76 равна 62.5873382
Высота треугольника опущенная с вершины C на сторону AB со сторонами 149, 123 и 76 равна 122.704124
Ссылка на результат
?n1=149&n2=123&n3=76
Найти высоту треугольника со сторонами 135, 121 и 100
Найти высоту треугольника со сторонами 102, 81 и 59
Найти высоту треугольника со сторонами 143, 143 и 121
Найти высоту треугольника со сторонами 143, 143 и 63
Найти высоту треугольника со сторонами 112, 80 и 61
Найти высоту треугольника со сторонами 136, 93 и 89
Найти высоту треугольника со сторонами 102, 81 и 59
Найти высоту треугольника со сторонами 143, 143 и 121
Найти высоту треугольника со сторонами 143, 143 и 63
Найти высоту треугольника со сторонами 112, 80 и 61
Найти высоту треугольника со сторонами 136, 93 и 89