Рассчитать высоту треугольника со сторонами 149, 126 и 102
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{149 + 126 + 102}{2}} \normalsize = 188.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{188.5(188.5-149)(188.5-126)(188.5-102)}}{126}\normalsize = 100.707482}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{188.5(188.5-149)(188.5-126)(188.5-102)}}{149}\normalsize = 85.1620319}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{188.5(188.5-149)(188.5-126)(188.5-102)}}{102}\normalsize = 124.40336}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 149, 126 и 102 равна 100.707482
Высота треугольника опущенная с вершины A на сторону BC со сторонами 149, 126 и 102 равна 85.1620319
Высота треугольника опущенная с вершины C на сторону AB со сторонами 149, 126 и 102 равна 124.40336
Ссылка на результат
?n1=149&n2=126&n3=102
Найти высоту треугольника со сторонами 150, 100 и 72
Найти высоту треугольника со сторонами 77, 56 и 32
Найти высоту треугольника со сторонами 118, 77 и 57
Найти высоту треугольника со сторонами 69, 53 и 40
Найти высоту треугольника со сторонами 100, 93 и 76
Найти высоту треугольника со сторонами 66, 53 и 49
Найти высоту треугольника со сторонами 77, 56 и 32
Найти высоту треугольника со сторонами 118, 77 и 57
Найти высоту треугольника со сторонами 69, 53 и 40
Найти высоту треугольника со сторонами 100, 93 и 76
Найти высоту треугольника со сторонами 66, 53 и 49