Рассчитать высоту треугольника со сторонами 149, 130 и 28

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{149 + 130 + 28}{2}} \normalsize = 153.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{153.5(153.5-149)(153.5-130)(153.5-28)}}{130}\normalsize = 21.9585108}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{153.5(153.5-149)(153.5-130)(153.5-28)}}{149}\normalsize = 19.1584323}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{153.5(153.5-149)(153.5-130)(153.5-28)}}{28}\normalsize = 101.950229}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 149, 130 и 28 равна 21.9585108
Высота треугольника опущенная с вершины A на сторону BC со сторонами 149, 130 и 28 равна 19.1584323
Высота треугольника опущенная с вершины C на сторону AB со сторонами 149, 130 и 28 равна 101.950229
Ссылка на результат
?n1=149&n2=130&n3=28