Рассчитать высоту треугольника со сторонами 149, 130 и 31
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{149 + 130 + 31}{2}} \normalsize = 155}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{155(155-149)(155-130)(155-31)}}{130}\normalsize = 26.1221527}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{155(155-149)(155-130)(155-31)}}{149}\normalsize = 22.79114}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{155(155-149)(155-130)(155-31)}}{31}\normalsize = 109.544512}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 149, 130 и 31 равна 26.1221527
Высота треугольника опущенная с вершины A на сторону BC со сторонами 149, 130 и 31 равна 22.79114
Высота треугольника опущенная с вершины C на сторону AB со сторонами 149, 130 и 31 равна 109.544512
Ссылка на результат
?n1=149&n2=130&n3=31
Найти высоту треугольника со сторонами 137, 112 и 83
Найти высоту треугольника со сторонами 96, 79 и 46
Найти высоту треугольника со сторонами 138, 106 и 73
Найти высоту треугольника со сторонами 68, 64 и 32
Найти высоту треугольника со сторонами 118, 111 и 68
Найти высоту треугольника со сторонами 140, 130 и 46
Найти высоту треугольника со сторонами 96, 79 и 46
Найти высоту треугольника со сторонами 138, 106 и 73
Найти высоту треугольника со сторонами 68, 64 и 32
Найти высоту треугольника со сторонами 118, 111 и 68
Найти высоту треугольника со сторонами 140, 130 и 46