Рассчитать высоту треугольника со сторонами 149, 130 и 57
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{149 + 130 + 57}{2}} \normalsize = 168}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{168(168-149)(168-130)(168-57)}}{130}\normalsize = 56.4509653}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{168(168-149)(168-130)(168-57)}}{149}\normalsize = 49.25252}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{168(168-149)(168-130)(168-57)}}{57}\normalsize = 128.747816}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 149, 130 и 57 равна 56.4509653
Высота треугольника опущенная с вершины A на сторону BC со сторонами 149, 130 и 57 равна 49.25252
Высота треугольника опущенная с вершины C на сторону AB со сторонами 149, 130 и 57 равна 128.747816
Ссылка на результат
?n1=149&n2=130&n3=57
Найти высоту треугольника со сторонами 140, 137 и 13
Найти высоту треугольника со сторонами 109, 82 и 79
Найти высоту треугольника со сторонами 93, 82 и 43
Найти высоту треугольника со сторонами 87, 56 и 47
Найти высоту треугольника со сторонами 102, 70 и 35
Найти высоту треугольника со сторонами 125, 91 и 70
Найти высоту треугольника со сторонами 109, 82 и 79
Найти высоту треугольника со сторонами 93, 82 и 43
Найти высоту треугольника со сторонами 87, 56 и 47
Найти высоту треугольника со сторонами 102, 70 и 35
Найти высоту треугольника со сторонами 125, 91 и 70