Рассчитать высоту треугольника со сторонами 149, 131 и 84
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{149 + 131 + 84}{2}} \normalsize = 182}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{182(182-149)(182-131)(182-84)}}{131}\normalsize = 83.6468306}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{182(182-149)(182-131)(182-84)}}{149}\normalsize = 73.5418443}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{182(182-149)(182-131)(182-84)}}{84}\normalsize = 130.449224}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 149, 131 и 84 равна 83.6468306
Высота треугольника опущенная с вершины A на сторону BC со сторонами 149, 131 и 84 равна 73.5418443
Высота треугольника опущенная с вершины C на сторону AB со сторонами 149, 131 и 84 равна 130.449224
Ссылка на результат
?n1=149&n2=131&n3=84
Найти высоту треугольника со сторонами 63, 57 и 55
Найти высоту треугольника со сторонами 148, 138 и 87
Найти высоту треугольника со сторонами 123, 109 и 102
Найти высоту треугольника со сторонами 121, 116 и 94
Найти высоту треугольника со сторонами 112, 68 и 50
Найти высоту треугольника со сторонами 139, 117 и 74
Найти высоту треугольника со сторонами 148, 138 и 87
Найти высоту треугольника со сторонами 123, 109 и 102
Найти высоту треугольника со сторонами 121, 116 и 94
Найти высоту треугольника со сторонами 112, 68 и 50
Найти высоту треугольника со сторонами 139, 117 и 74