Рассчитать высоту треугольника со сторонами 149, 135 и 102
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{149 + 135 + 102}{2}} \normalsize = 193}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{193(193-149)(193-135)(193-102)}}{135}\normalsize = 99.1826968}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{193(193-149)(193-135)(193-102)}}{149}\normalsize = 89.8635173}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{193(193-149)(193-135)(193-102)}}{102}\normalsize = 131.271216}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 149, 135 и 102 равна 99.1826968
Высота треугольника опущенная с вершины A на сторону BC со сторонами 149, 135 и 102 равна 89.8635173
Высота треугольника опущенная с вершины C на сторону AB со сторонами 149, 135 и 102 равна 131.271216
Ссылка на результат
?n1=149&n2=135&n3=102
Найти высоту треугольника со сторонами 120, 86 и 37
Найти высоту треугольника со сторонами 58, 51 и 45
Найти высоту треугольника со сторонами 119, 67 и 59
Найти высоту треугольника со сторонами 31, 31 и 28
Найти высоту треугольника со сторонами 57, 41 и 28
Найти высоту треугольника со сторонами 134, 77 и 64
Найти высоту треугольника со сторонами 58, 51 и 45
Найти высоту треугольника со сторонами 119, 67 и 59
Найти высоту треугольника со сторонами 31, 31 и 28
Найти высоту треугольника со сторонами 57, 41 и 28
Найти высоту треугольника со сторонами 134, 77 и 64