Рассчитать высоту треугольника со сторонами 149, 135 и 90
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{149 + 135 + 90}{2}} \normalsize = 187}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{187(187-149)(187-135)(187-90)}}{135}\normalsize = 88.6944342}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{187(187-149)(187-135)(187-90)}}{149}\normalsize = 80.360729}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{187(187-149)(187-135)(187-90)}}{90}\normalsize = 133.041651}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 149, 135 и 90 равна 88.6944342
Высота треугольника опущенная с вершины A на сторону BC со сторонами 149, 135 и 90 равна 80.360729
Высота треугольника опущенная с вершины C на сторону AB со сторонами 149, 135 и 90 равна 133.041651
Ссылка на результат
?n1=149&n2=135&n3=90
Найти высоту треугольника со сторонами 142, 122 и 27
Найти высоту треугольника со сторонами 116, 113 и 57
Найти высоту треугольника со сторонами 150, 134 и 129
Найти высоту треугольника со сторонами 134, 112 и 63
Найти высоту треугольника со сторонами 91, 83 и 71
Найти высоту треугольника со сторонами 132, 124 и 30
Найти высоту треугольника со сторонами 116, 113 и 57
Найти высоту треугольника со сторонами 150, 134 и 129
Найти высоту треугольника со сторонами 134, 112 и 63
Найти высоту треугольника со сторонами 91, 83 и 71
Найти высоту треугольника со сторонами 132, 124 и 30